
Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Principles and Practice of

Application Performance

Measurement and Analysis on

Parallel Systems
Lecture 1: Terminology and Methodology

1. July 2011 | Bernd Mohr

Institute for Advanced Simulation (IAS)

Jülich Supercomputing Centre (JSC)

2

Performance Tuning: an Old Problem!

[Intentionally left blank]

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

3

“The most constant difficulty in contriving the engine has
arisen from the desire to reduce the time in which the
calculations were executed to the shortest which is possible.”

Charles Babbage
1791 - 1871

Performance Tuning: an Even Older Problem!!

4

Motivation

 High complexity in parallel and distributed systems

Four layers

 Application

 Algorithm, data structures

 Parallel programming interface / Middle ware

 Compiler, parallel libraries, communication, synchronization

 Operating system

 Process and memory management, IO

 Hardware

 CPU, memory, network

 Mapping/interaction between dif ferent layers

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

5

Performance Properties of Parallel Programs

 Factors which inf luence performance of parallel programs

 “Sequential” factors

 Computation

 Cache and memory

 Input / output

 “Parallel” factors

 Communication (Message passing)

 Threading

 Synchronization

 Choose right algorithm, use optimizing compiler

 Tough! Not many tools yet, hope compiler gets it right

 Not given enough attention

 More or less understood, tool support

Performance Measurement Cycle

I-6

 Insertion of extra code (probes, hooks)

into application

Instrumentation

 Transformation of the results into a

representation that can be easily

understood by a human user

Presentation

Measurement  Collection of data relevant to

performance analysis

Optimization  Elimination of performance problems

Analysis  Calculation of metrics, identif ication of

performance problems

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

CONTENT

I-7

 Metrics

 Instrumentation techniques

• Source code instrumentation

• Binary instrumentation

 Instrumentation of parallel programs

• MPI

• OpenMP

 Measurement techniques

• Prof iling

• Tracing

I-8

Metrics of Performance

 What can be measured?

A count of how many times an event occurs

 E.g., Number of input / output requests

The duration of some time interval

 E.g., duration of these requests

The size of some parameter

 Number of bytes transmitted or stored

 Derived metrics

E.g., rates / throughput

Needed for normalization

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-9

Example Metrics

 Clock rate

 MIPS

Millions of instructions executed per second

 FLOPS

Floating-point operations per second

 Benchmarks

Standard test program(s)

Standardized methodology

E.g., SPEC, Linpack

 QUIPS / HINT [Gustafson and Snell, 95]

Quality improvements per second

Quality of solution instead of ef fort to reach it

 Execution time

“math” Operations?

HW Operations?

HW Instructions?

32-/64-bit? …

I-10

Execution Time

 Wall-clock time

 Includes waiting time: IO, memory, other system activities

 In time-sharing environments also time consumed by other

applications

 CPU time

Time spent by the CPU to execute the program

Execution time on behalf of the program

Does not include time the program was context-switched out

 Problem: does not include inherent waiting time (e.g., IO)

 Problem: portability? What is user, what is system time?

 Problem: execution time is non-deterministic

Use mean or minimum of several runs

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr









Synchronization Imbalance Time

Provides an estimation to the user of how much time in the overall
program would be saved if the corresponding section of the code had
a perfect balance

 Represents an upper bound on the “potential saving”

Load Imbalance Metrics

 Imbalance Time

Metric time to identify code regions that need optimization

Two variations:

Computation Imbalance Time

Computation Imbalance Time = Max Time – Avg time

Synchronization Imbalance Time = Avg Time – Min time

I-11

Load Imbalance Metrics

 Imbalance %

Provide an idea of the “badness” of the imbalance

Corresponds to the % of the time that the rest of the team, excluding
the slowest PE is not engaged in useful work on the given function

 “Percentage of resources available for parallelism” that is wasted

Imbalance% =
Imbalance time

Max Time
X

N - 1

N
100 X

I-12

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Speedup and Efficiency

 For a given problem A, let

SerTime(n) = Time of the best serial algorithm to solve A

for input of size n

ParTime(n,p) = Time of the parallel algorithm + architecture

to solve A for input size n, using p processors

Note that SerTime(n) ≤ ParTime(n,1)

 Then

Speedup(p) = SerTime(n) / ParTime(n,p)

Work(p) = p • ParTime(n,p)

Eff iciency(p) = SerTime(n) / [p • ParTime(n,p)]

I-13

Speedup and Efficiency II

 In general, expect

 0 ≤ Speedup(p) ≤ p

 Serial work ≤ Parallel work < ∞

 0 ≤ Ef f iciency ≤ 1

 Linear speedup: if there is a constant c > 0 so that speedup is at least

c • p. Many use this term to mean c = 1.

 Perfect or ideal speedup: speedup(p) = p

 Superlinear speedup: speedup(p) > p (ef f iency > 1)

Typical reason: Parallel computer has p times more memory

(cache), so higher f raction of program data f its in memory instead of

disk (cache instead of memory)

Parallel version is solving slightly dif ferent, easier problem or

provides slightly different answer

I-14

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Amdahl’s Law

 Amdahl [1967] noted:

Given a program, let f be f raction of time spent on operations that

must be performed serially (unparallelizable work). Then for p

processors:

1

Speedup(p) ≤

f + (1 – f)/p

Thus no matter how many processors are used

Speedup(p) ≤ 1/f

Unfortunately, typical f is 5 – 20%

I-15

Maximal Possible Speedup / Efficiency

I-16

f=0.001
f=0.01
f=0.1

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

17

Amdahl’s Law II

 Amdahl was an optimist

Parallelization might require extra work, typically

 Communication

 Synchronization

 Load balancing

Amdahl convinced many people that general-purpose parallel

computing was not viable

 Amdahl was an pessimist

Fortunately, we can break the law!

Find better (parallel) algorithms with much smaller values of f

Superlinear speedup because of more data f its cache/memory

Scaling: time spent in serial portion is of ten a decreasing f raction of

the total time as problem size increase

I-17

Scaling

 Sometimes the serial portion

 is a f ixed amount of time independent of problem size

 or grows with problem size but slower than total time

 Thus can of ten exploit large parallel machines by scaling the problem

size with the number of processes

 Scaling approaches used for speedup reporting/measurements:

Fixed problem size ( strong scaling)

Fixed problem size per processor ( weak scaling)

Fixed time, f ind largest problem solvable [Gustafson 1988]

Commonly used in evaluating databases (transactions/s)

Fixed ef f iciency: f ind smallest problem to achieve it

( isoef f iciency analysis)

I-18

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

CONTENT

I-19

 Metrics

 Instrumentation techniques

• Source code instrumentation

• Binary instrumentation

 Instrumentation of parallel programs

• MPI

• OpenMP

 Measurement techniques

• Prof iling

• Tracing

I-20

Performance Tools Challenge

 User’s mental model of the program

does not match the executed version

Performance tools must be able to revert this semantic gap

C = A + B

(c1 , c2) = (a1 , a2) 6 (b1 , b2)

a1=1& a2=1e c1bb1&

c2bb2

b1=1& b2=1e c1ba1&

c2ba2

for i = 1 : 2 ,

a i=? e ci b b i

b i=? e ci b a i

a i= b i e ci b a i

otherwise, error

...

v09,S [a30,1] ,m00

a30 - 26612: abcd

v12,S [a31,1] ,m00

a30 a 12+a30

a31 - 26616: abcd

v10,S [a30,1] ,m00

a16 - 22516: abcd

a31 a 12+a31

a30 a 15+a16

v14,S [a31,1] ,m00

a16 - 32764: abcd

v11,S v 10-v14 ,m00

...

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-21

Semantic Gap

 Instrumentation levels

Source code

 Library

Runtime system

Object code

Operating system

Runtime image

Virtual machine

 Problem

Every level provides dif ferent information

Often instrumentation on multiple levels required

 Challenge

Mapping performance data onto application-level abstraction

I-22

Instrumentation Techniques

 Static instrumentation

Program is instrumented prior to execution

 Dynamic instrumentation

Program is instrumented at runtime

 Code is inserted

Manually

Automatically

 By preprocessor / source-to-source translation tool

 By compiler

 By linking against pre-instrumented library or runtime system

 By binary-rewrite / dynamic instrumentation tool

 e.g., “printf”  manual static source-code instrumentation

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-23

Source Code Instrumentation (I)

 For large complex applications, manual instrumentation is too tedious

and error-prone  Tool support needed

 Automatic performance Instrumentation typically requires full source

code parsers, e.g.,

Fortran, C: f ind 1st executable line and all exit points

C: executable code inside return statements

int func(...) {
double d;
return (foo()*bar());

}

int func(...) {
double d;
trace_enter();
return (foo()*bar());
trace_exit();

}

int func(...) {
double d;
trace_enter();
trace_exit();
return (foo()*bar());

}

int func(...) {
double d;
trace_enter();
{ int t1_ = (foo()*bar());

trace_exit();
return t1_; }

}

I-24

Source Code Instrumentation (II)

 Example C++ issues:

Template instrumentation?

Executing code before main

 C++ instrumentation trick

Def ine instrumentation object

Declare instrumentation object as 1st statement in every function

and method to be instrumented

class Tracer { public:
Tracer(…) { trace_enter(); }
~Tracer() { trace_exit(); }

};

int func(...) { Tracer trc_1;
double d;
return (foo()*bar());

}

 Function overloading

 Operator overloading

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-25

TAU Source Code Instrumentor

 Part of the TAU performance f ramework

 Supports

 f77, f90

C, and C++

 Inserts calls to the TAU monitoring API

 Based on the Program Database Toolkit

 http://tau.uoregon.edu/

I-26

Program Database Toolkit

 Based on commercial parsers

C, C++: Edison Design Group (EDG)

 Full ISO 1998 C++ and ISO 1999 C Support

Fortran 77, Fortran90: Mutek, [Cleanscape]

 Program Database Utilities and Conversion

Tools APplication Environment (DUCTAPE)

Object-oriented Access to Static Information

Classes, Modules, Routines, Types, Templates, Files, Macros,

Namespaces, Comments/Pragmas, Statements (C/C++ only)

 http://www.cs.uoregon.edu/research/pdt/

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-27

PDT Architecture and Tools

Application
/ Library

C / C++
parser

Fortran parser
F77/90/95

C / C++
IL analyzer

Fortran
IL analyzer

Program
Database

Files

IL IL

PDBhtml

SILOON

CHASM

TAU_instr

Program
documentation

Application
component glue

C++ / F90/95
interoperability

DUCTAPE Automatic source
instrumentation

I-28

Binary Instrumentation

 Static binary rewrite

 Instrumentation code is inserted

into the binary before it starts to execute

Creates modif ied executable

 Dynamic binary instrumentation

On-the-f ly: Insert, remove, and change instrumentation

in the application program while it is running

Most f lexible (but most complex) technique

Parallel programs

 Coordinated instrumentation of all images needed

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-29

Dyninst

 Dyninst is a C++ library for machine-independent

 process control and manipulation

 runtime code generation

 and binary patching

 University of Wisconsin and University of Maryland

 Basis for Paradyn, DPCL, and OpenSpeedShop

 Open source

 Supports

Power/PowerPC (Linux)

BlueGene/P

 http://www.dyninst.org

 X86 (Linux, BSD, Windows)

 X86_64 (Linux, BSD, Windows)

I-30

Comparison of Techniques (I)

 Source code instrumentation

 Portable

 Link back to source code easy

 Only way to capture “high-level” user abstractions

 Recompilation necessary for

(change in) instrumentation

 Requires source code to be available

 Hard to use for mixed-language applications

 Source-to-source translation tool hard to implement

for C++ and Fortran90

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-31

Comparison of Techniques (II)

 Binary code instrumentation

 /  The other way around compared

to source instrumentation

 Pre-instrumented library / runtime

 Easy to use: only re-linking necessary

 Can only record information about

library / runtime entities

 No single technique is suf f icient!

 Typically, combinations of techniques needed!

CONTENT

I-32

 Metrics

 Instrumentation techniques

• Source code instrumentation

• Binary instrumentation

 Instrumentation of parallel programs

• MPI

• OpenMP

 Measurement techniques

• Prof iling

• Tracing

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-33

Instrumentation of Parallel Programs

 User-level constructs

Modules / components / …

Program phases

Functions

 Loops

…

 Constructs of the parallel programming models

Message passing

 MPI, PVM, …

Threading and synchronization

 OpenMP, POSIX, Win32, or Java threads, …

I-34

Instrumentation of User Functions

 Ideally: instrumentation by compiler or tool

Hidden, unsupported compiler options

(GNU, Intel, IBM, NEC, Sun Fortran, PGI, Hitachi, ???)

TAU Source Code Instrumentor

TAU Binary Instrumentor (Dyninst)

TAU Virtual Machine Instrumentor (Java, Python)

 Always works: manually

 Instrumentation APIs of tools: Scalasca, Vampirtrace, TAU, …

Scalasca’s POMP Directives

More details later …

 Main problem: selection of relevant constructs

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-35

PMPI: The MPI Profiling Interface

 Every MPI function has two names: MPI_xxx and PMPI_xxx

 This allows selective replacement of MPI routines at link time

no re-compilation necessary

 Also called: wrapper function library

 Used by basically every MPI performance tools

VampirTrace, MPICH MPE, Scalasca EPIK, TAU, …

User Program

Call MPI_Bcast

Call MPI_Send

MPI Library

MPI_Bcast

PMPI_Send

MPI_Send

MPI Library

MPI_Bcast

PMPI_Send

MPI_Send

Wrapper Library

MPI_Send

I-36

PMPI Example (C/C++)

#include <stdio.h>

#include "mpi.h"

static int numsend = 0;

int MPI_Send(void *buf, int count, MPI_Datatype type,

int dest, int tag, MPI_Comm comm) {
numsend++;

return PMPI_Send(buf, count, type, dest, tag, comm);
}

int MPI_Finalize() {
int me;

PMPI_Comm_rank(MPI_COMM_WORLD, &me);
printf("%d sent %d messages.\n", me, numsend);
return PMPI_Finalize();

}

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-37

PMPI Wrapper Development

 MPI has many functions! [MPI-1: 130 MPI-2: 320]

 use wrapper generator (e.g., f rom MPICH MPE)

 needed for Fortran and C/C++

 Message analysis / recording

 Location recording  use ranks in MPI_COMM_WORLD?

Data volume  #elements * sizeof(type)

No message ID  need complete recording of traf f ic

Wildcard source and tag  record real values

Collective communication  communicator tracking

Non-blocking, persistent communication  track requests

Non-blocking  record recv at Wait*, Test*, Irecv ?

One-sided communication?

I-38

OpenMP Monitoring?

 Problem:

OpenMP does not def ine standard monitoring interface

OpenMP is def ined mainly by directives/pragmas

 Solution:

POMP: OpenMP Monitoring Interface

 Joint Development

 Forschungszentrum Jülich

 University of Oregon

Presented at EWOMP’01, LACSI’01 and SC’01

“The Journal of Supercomputing”, 23, Aug. 2002.

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-39

Example:
!$OMP PARALLEL DO POMP Instrumentation

!$OMP PARALLEL DO clauses...

do loop

!$OMP END PARALLEL DO

!$OMP PARALLEL other-clauses...

!$OMP DO schedule-clauses, ordered-clauses,
lastprivate-clauses

do loop
!$OMP END DO

!$OMP END PARALLEL DO

NOWAIT

!$OMP BARRIER

call pomp_parallel_fork(d1)

call pomp_parallel_begin(d1)

call pomp_parallel_end(d1)

call pomp_parallel_join(d1)

call pomp_do_enter(d2)

call pomp_do_exit(d2)

call pomp_barrier_enter(d3)

call pomp_barrier_exit(d3)

context
descriptor

POMP-like Hooks in Production Compilers

 POMP was the base for the OpenMP instrumentation hooks provided in

production compilers

Cray Compiling Environment

PGI

 IBM XL compilers

 These instrumentation hooks are used for performance analysis of

OpenMP in production tools

CrayPat

PGProf

 Also: New OpenMP ARB sanctioned low-level tool interface

 http://www.compunity.org/futures/omp-api.html

Proof -of-concept implementations by Sun and Intel compilers

I-40

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-41

POMP Instrumentation Tool

 OpenMP Pragma And Region Instrumentor

 Source-to-source translator to insert POMP calls

around OpenMP constructs and API functions

 Implemented in C++

 Supports:

Fortran77 und Fortran90, OpenMP 2.0

C und C++, OpenMP 1.0

Additional POMP directives for control and region def inition

Used by Scalasca, VampirTrace, TAU, and ompP

Preserves source code information (#line line f ile)

 Does not support: Instrumentation of user functions

Current Major OPARI Limitations

 Does not yet support

Varying number of threads in dif ferent parallel regions

Nested parallelism

 Latest OpenMP 3.0 standard features like tasking

 Executed before compiler preprocessor

 issues with macros, conditional compilation, includes!

 Needs special care if building ...

 ... more than one application in one directory

 ... applications spread over multiple directories

I-42

Fixed in OPARI2

Fixed in OPARI2

OPARI2: will be available end of 2011

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

CONTENT

I-43

 Metrics

 Instrumentation techniques

• Source code instrumentation

• Binary instrumentation

 Instrumentation of parallel programs

• MPI

• OpenMP

 Measurement techniques

• Prof iling

• Tracing

I-44

Performance Measurement

 Two dimensions

When performance measurement is triggered

 External agent (asynchronous)

 Sampling

 Timer interrupt

 Hardware counters overf low

 Can measure unmodif ied executables, very low overhead

 Internal agent (synchronous)

 Code instrumentation:

 Automatic or manual instrumentation

How performance data is recorded

 Prof ile ::= Summation of events over time

 run time summarization (functions, call sites, loops, …)

 Trace f ile ::= Sequence of events over time

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-45

inclusive

duration
child

duration

Measurement

 Typical performance data include

Counts

Durations

Communication cost

Synchronization cost

 IO accesses

System calls

Hardware events

exclusive

duration

int f1()

{
int a;

a = a + 1;

f2();

a = a + 1;

return a;
}

I-46

Critical Issues

 Accuracy

Perturbation

 Measurement alters program behavior

 E.g., memory access pattern

 Intrusion overhead

 Measurement itself needs time and thus lowers performance

Accuracy of timers, counters

 Granularity

How many measurements

How much information / work during each measurement

 Tradeof f

Accuracy expressiveness of data

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-47

Measurement Methods: Profiling

 Recording of aggregated information

Time

Counts

 Calls

 Hardware counters

 about program and system entities

Functions, call sites, loops, basic blocks, …

Processes, threads

 Methods to create a prof ile

PC sampling (statistical approach)

 Interval timer / direct measurement (deterministic approach)

I-48

Profiling (2)

 Sampling

General statistical measurement technique based on the
assumption that a subset of a population being examined is
representative for the whole population

Running program is interrupted periodically

 Operating system signal or Hardware counter overf low

 Interrupt service routine examines return-address stack to f ind
address of instruction being executed when interrupt occurred

 Using symbol-table information this address is mapped onto
specif ic subroutine

Requires long-running programs

 Interval timing

Time measurement at the beginning and
at the end of a code region

Requires instrumentation + high-resolution / low-overhead clock

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-49

Measurement Methods: Tracing

 Recording information about signif icant points (events) during

execution of the program

Enter/leave a code region (function, loop, …)

Send/receive a message ...

 Save information in event record

Timestamp, location ID, event type

 plus event specif ic information

 Event trace := stream of event records sorted by time

 Can be used to reconstruct the dynamic behavior

 Abstract execution model on level of def ined events

Event tracing

void foo() {

...

send(B, tag, buf);
...

}

Process A

void bar() {

...

recv(A, tag, buf);

...

}

Process B

MONITOR

MONITOR

s
y

n
c

h
ro

n
iz

e
(d

)

void bar() {

trc_enter("bar");

...

recv(A, tag, buf);

trc_recv(A);
...

trc_exit("bar");

}

void foo() {

trc_enter("foo");

...

trc_send(B);

send(B, tag, buf);
...

trc_exit("foo");

}

instrument

Global trace

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify

1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo1

...

bar1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

I-51

Tracing: Time-line Visualization

1 master

2 slave

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main

master

slave

58 60 62 64 66 68 70

B

A

I-52

Tracing vs. Profiling

 Tracing Advantages

Event traces preserve the temporal and spatial relationships among

individual events ( context!)

Allows reconstruction of dynamic behavior of application

on any required abstraction level

 Automatic analysis

 Visualization

Most general measurement technique

 Prof ile data can be constructed f rom event traces

 Disadvantages

Traces can become very large

Writing events to a f ile at runtime can cause perturbation

Writing tracing sof tware is complicated

 Event buf fering, clock synchronization, …

Principles and Practice of Application Performance

Measurement and Analysis on Parallel Systems

Moscow

July 2011

© 2011 Bernd Mohr

Trace File Formats

 Current Vampir trace formats

VTF: family of historical ASCII and binary formats

 http://www.cs.uoregon.edu/research/paracomp/tau/vtf3-1.43.tar.gz

OTF: new Open Trace Format

 http://www.tu-dresden.de/zih/otf /

 TAU performance analysis toolset

 http://tau.uoregon.edu/docs.php#api

 EPILOG: Jülich open-source trace format

 http://www.scalasca.org

 MPICH Multi-Processing Environment (ALOG, CLOG, SLOG, SLOG-2)

 http://www-unix.mcs.anl.gov/perfvis/software/log_format/

 Paraver trace analyzer (BSC, CEPBA)

 http://www.bsc.es/paraver

I-53

No Single Solution is Sufficient!

I-5454

Combination of methods, techniques and tools needed

 Instrumentation

 Source code / binary, static / dynamic, manual / automatic

Measurement

 Internal / external trigger, prof iling / tracing

Analysis

 Statistics, Visualization, Automatic, Data mining, …

