Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

Mitglied der Helmholtz-Gemeinschaft

M) 0L

Principles and Practice of
Application Performance
Measurement and Analysis on

Parallel Systems

Lecture 1: Terminology and Methodology

1.July 2011 | Bernd Mohr

Institute for Advanced Simulation (IAS)
Julich Supercomputing Centre (JSC)

CH

FORSCHUNGSZENTRUM

Performance Tuning: an Old Problem! !)

[Intentionally left blank]

JULICH

© 2011 Bernd Mohr

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

Performance Tuning: an Even Older Problem!! A JULICH

FORSCHUNGSZENTRUM

(@)

"The most constant difficulty in contriving the engine has
arisen from the desire to reduce the time in which the
calculations were executed to the shortest which is possible.”

Charles Babbage

a 1791 - 1871
p.),
Motivation #) 0LICH

FORSCHUNGSZENTRUM

m High complexity in parallel and distributed systems
[Four layers
m Application
o Algorithm, data structures
m Parallel programming interface / Middle ware
o1 Compiler, parallel libraries, communication, synchronization
m Operating system
01 Process and memory management, 10
= Hardware
o CPU, memory, network
m Mapping/interaction between different layers

© 2011 Bernd Mohr

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

Performance Properties of Parallel Programs !)JU

m Factors which influence performance of parallel programs
“Sequential” factors
= Computation
= Choose right algorithm, use optimizing compiler
m Cache and memory
= Tough! Not many tools yet, hope compiler gets it right
= Input/ output
= Not given enough attention
“Parallel” factors
m Communication (Message passing)
m Threading
m Synchronization
= More or less understood, tool support

LICH

{UNGSZENTRUM

Performance Measurement Cycle 9 JU

Instrumentation - m Insertion of extra code (probes, hooks)
1 into application
| Measurement | m Collection of datarelevant to

performance analysis
A4

| Analysis | m Calculation of metrics, identification of
performance problems

_ m Transformation of the results into a

representation that can be easily
v understood by a human user

- m Elimination of performance problems

LICH

{UNGSZENTRUM

© 2011 Bernd Mohr

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

#) 0LICH

FORSCHUNGSZENTRUM

CONTENT

Metrics
Instrumentation techniques
- Source code instrumentation
« Binary instrumentation
Instrumentation of parallel programs
+ MPI

- OpenMP
Measurement techniques

- Profiling

+ Tracing

Metrics of Performance !) JULICH

FORSCHUNGSZENTRUM

m What can be measured?
1A count of how many times an event occurs
m E.g., Number of input / output requests
[1The duration of some time interval
m E.g., duration of these requests
[1The size of some parameter
= Number of bytes transmitted or stored

m Derived metrics
O E.g., rates / throughput
1 Needed for normalization

© 2011 Bernd Mohr

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

Example Metrics

m Clockrate
m MIPS
Millions of instructions executed per second
m FLOPS
Floating-point operations per secong
m Benchmarks ©
Standard test program(s)
Standardized methodology
E.g., SPEC, Linpack
m QUIPS / HINT [Gustafson and Snell, 95]
Quality improvements per second
Quality of solution instead of effort to reach it
m Execution time

Q

“math” Operations?
HW Operations?
HW Instructions?

4 10LicH

Execution Time

m Wall-clock time

applications

m CPU time
Time spent by the CPU to execute the program
Execution time on behalf of the program

Includes waiting time: 10, memory, other system activities
In time-sharing environments also time consumed by other

#4) JULICH

Does not include time the program was context-switched out

= Problem: does not include inherent waiting time (e.g., 10)
m Problem: portability? What is user, what is system time?

m Problem: execution time is non-deterministic
Use mean or minimum of several runs

1-10

© 2011 Bernd Mohr

Moscow
July 2011

4) 10

LICH

RSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

Load Imbalance Metrics !)JU'—'CH

m Imbalance Time
Metric time to identify code regions that need optimization
Two variations:
Computation Imbalance Time

Computation Imbalance Time = Max Time —Avg time

Synchronization Imbalance Time

Synchronization Imbalance Time = Avg Time — Min time

Provides an estimation to the user of how much time in the overall
program would be saved if the corresponding section of the code had
aperfect balance

m Represents an upper bound on the “potential saving”

Load Imbalance Metrics 9“—”—'0”

= Imbalance %
Provide an idea of the “badness” of the imbalance

Corresponds to the % of the time that the rest of the team, excluding
the slowest PE is not engaged in useful work on the given function

m “Percentage of resources available for parallelism” that is wasted

Imbalance time X N
Max Time N-1

Imbalance% = 100 X

© 2011 Bernd Mohr

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

Speedup and Efficiency) 0LICH

m Fora given problem A, let

SerTime(n) = Time of the best serial algorithm to solve A
forinput of sizen
ParTime(n,p) = Time of the parallel algorithm + architecture

to solve A forinput size n, using p processors
Note that SerTime(n) < ParTime(n,1)

= Then
Speedup(p) = SerTime(n) / ParTime(n,p)
Work(p) = p * ParTime(n,p)
Efficiency(p) = SerTime(n) / [p + ParTime(n,p)]
12
Speedup and Efficiency II 4 J0LICH

m In general, expect

0 < Speedup(p) < p
Serial work < Parallel work < «
0 < Efficiency <1

m Linear speedup: if thereis a constant ¢ > 0 so that speedup is at least
c ¢ p. Many use this term to mean c = 1.

m Perfect orideal speedup: speedup(p)=p
m Superlinear speedup: speedup(p)>p (effiency > 1)

Typical reason: Parallel computer has p times more memory
(cache), so higher fraction of program data fits in memory instead of
disk (cache instead of memory)

Parallel version is solving slightly different, easier problem or
provides slightly different answer

1-14

© 2011 Bernd Mohr

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance Moscow
Measurementand Analysis on Parallel Systems July 2011

Amdahl’s Law 9 J UL'CH

m Amdahl [1967] noted:
Given a program, let f be fraction of time spent on operations that
must be performed serially (unparallelizable work). Then forp
processors:

1

Speedup(p) <
f+@-"fp

Thus no matter how many processors are used
Speedup(p) < 1/f

Unfortunately, typical f is 5 — 20%

1-15

Maximal Possible Speedup / Efficiency 4 JULICH
1024————T—7T—7T T T T T 7T L e e e)
512+ o
256} s [e 1
128 . 1 08l N R
| e] - .
5 o . A .
e 32 < 1 8 osf N A
Q £
(7] 16 b i} N
ol 4 0.4F o
ar] 02f N
zk -
1 Il Il Il Il Il Il Il Il Il 00 Il Il Il Il Il Il Il
NP b D AL Al ,\r& 'L‘ﬁ 6\']«'&0‘} NP b D A0 Al N2 ’L"% 6\1\6}9‘
Processors Processors
B {=0.001
A =0.01
@® =0.1
1-16

© 2011 Bernd Mohr ’J JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

17

Amdahl’s Law II 4) J0LIcH

m Amdahl was an optimist

Parallelization might require extra work, typically
= Communication
m Synchronization
= Load balancing

Amdahl convinced many people that general-purpose parallel

computing was not viable

m Amdahl was an pessimist

Fortunately, we can break the law!
Find better (parallel) algorithms with much smaller values of f
Superlinear speedup because of more data fits cache/memory

Scaling: time spent in serial portion is often a decreasing fraction of
the total time as problem size increase

1-17

Scaling 9 JUL'CH

m Sometimes the serial portion

is afixed amount of time independent of problem size
or grows with problem size but slower than total time

m Thus can often exploit large parallel machines by scaling the problem
size with the number of processes

m Scaling approaches used for speedup reporting/measurements:

Fixed problem size (= strong scaling)
Fixed problem size per processor (= weak scaling)

Fixed time, find largest problem solvable [Gustafson 1988]
Commonly used in evaluating databases (transactions/s)

Fixed efficiency: find smallest problem to achieve it
(= isoefficiency analysis)

1-18

© 2011 Bernd Mohr

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance

Measurementand Analysis on Parallel Systems

CONTENT

Metrics

Instrumentation techniques
« Source code instrumentation
« Binary instrumentation

#) 0LICH

FORSCHUNGSZENTRUM

Instrumentation of parallel programs

- MPI

- OpenMP
Measurement techniques

- Profiling

+ Tracing

m User's mental model of the program
does not match the executed version

Performance Tools Challenge

C=A+B
(c1,¢2) =(al,a2) £ (b1,b2)
al=1&a2=11M cl§bl&
2qb2
b1=1&b2=1M clfal&
@qa

fori=1:2,

ai=?M.ci § bi
bi=? M ci & ai
ai=bill ci & ai
otherwise,error

7L

-

s
L)

o

v09,8 [a30,1],m00
a30 -26612: abcd

v12,5 [a31,1],m00
a30 al2+a30
a3l -26616: abed
v10,8 [a30,1],m00
alé -22516: abcd
a3l al2+a3l
a30 alS+al6
v14,5 [a31,1],m00

alé -32764:abcd
v11,8 v10-v14,m00

Performance tools must be able to revert this semantic gap

#) 0LICH

FORSCHUNGSZENTRUM

1-20

© 2011 Bernd Mohr

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance Moscow

Measurementand Analysis on Parallel Systems July 2011
Semantic Gap #) JOLICH
A
m Instrumentation levels Lo ,U:Er.é"v(,'t;gf"“"l”
Source code ’ 7 ‘
Lb ,' ”| s!mrce code| n—‘ lnslrumantmlnn‘ -
| rary : ({ Preprocessor; w=[instrumentation |
Runtime system h [eo0rss 5503
. = (compiler) w-[INstrumentation—m|
Ob]eCt code H [object code | [libraries | instrumentation—w
Operating system \ e)
p . g y “ [axecutable | w=[instrumentation|—m|
Runtime image . (opeTating system)
V”-tual machlne “ [Tuntime i‘mage } w{ instrumentation|—m|
“s . (virtual machine) w| instrumentationy =
-~ run
-~
= Problem ~~o) Perormance baia |-

Every level provides different information
Often instrumentation on multiple levels required
m Challenge
Mapping performance data onto application-level abstraction

1-21

Instrumentation Techniques 4 JULICH

m Static instrumentation

Program is instrumented priorto execution
m Dynamic instrumentation

Program is instrumented at runtime

m Codeis inserted
Manually
Automatically
m By preprocessor/ source-to-source translation tool
= By compiler
= By linking against pre-instrumented library or runtime system
m By binary-rewrite / dynamic instrumentation tool

= e.g., “printf” = manual static source-code instrumentation

1-22

© 2011 Bernd Mohr ’J JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

Source Code Instrumentation (I) !)JULICH

m Forlarge complex applications, manual instrumentation is too tedious
and error-prone = Tool support needed

m Automatic performance Instrumentation typically requires full source
code parsers, e.g.,

Fortran, C: find 1st executable line and all exit points
C: executable code inside return statements

int func(...) {
double d; -
return (foo(*bar());|[int func(...) {
} double d;
trace_enter();
{ int tl_ = (foo()*bar(Q);
trace_exit();
return tl_; }
} /4
1-23
Source Code Instrumentation (I1) 9JU|—|CH
m Example C++ issues:
Template instrumentation? Function overloading
Executing code before main Operator overloading

m C++ instrumentation trick
Define instrumentation object

class Tracer { public:
Tracer(..) { trace_enter(); }
~Tracer() { trace_exit(); }

};

Declare instrumentation object as 1st statement in every function
and method to be instrumented

int func(...) { Tracer trc_1;
double d;
return (foo()*bar());

3

1-24

© 2011 Bernd Mohr

Moscow
July 2011

S

LICH

RSCHUNGSZENTRUM

Principles and Practice of Application Performance

Measurementan

d Analysis on Parallel Systems

TAU Source Code Instrumentor !)JUUCH

m Part of the TAU performance framework
m Supports
f77,190
C,and C++
m Inserts calls to the TAU monitoring API Tuning and Analysis Uiities

m Based onthe Program Database Toolkit

m http://tau.uoregon.edu/

1-25

Program Database Toolkit J JOLICH

m Based on commercial parsers
C, C++: Edison Design Group (EDG)
m Full ISO 1998 C++ and ISO 1999 C Support
Fortran 77, Fortran90: Mutek, [Cleanscape]

u ni e Program Database Utilities and Conversion
puCTARE Tools APplication Environment (DUCTAPE)

Object-oriented Access to Static Information

Classes, Modules, Routines, Types, Templates, Files, Macros,
Namespaces, Comments/Pragmas, Statements (C/C++ only)

m http://www.cs.uoregon.edu/research/pdt/

1-26

© 2011 Bernd Mohr

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

PDT Architecture and Tools

Application
/ Library

C/C++
parser

Fortran parser
F77/90/95

a PDBhtml

C/C++
IL analyzer

Fortran
IL analyzer

4)ULICH

Program
documentation

Application
componentglue

C++/ F90/95
interoperability

Program . Automatic source
Daég:base TAU_instr instrumentation
iles
1-27
Binary Instrumentation 4 J0LICH

m Static binary rewrite

Instrumentation code is inserted
into the binary before it starts to execute

Creates modified executable

m Dynamic binary instrumentation

On-the-fly: Insert, remove, and change instrumentation
in the application program while it is running

Most flexible (but most complex) technique
Parallel programs

= Coordinated instrumentation of all images needed

1-28

© 2011 Bernd Mohr

Moscow
July 2011

S

LICH

RSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

Dyninst

m Dyninstis a C++ library for machine-independent
process control and manipulation
runtime code generation
and binary patching
m University of Wisconsin and University of Maryland
m Basis for Paradyn, DPCL, and OpenSpeedShop
m Open source
m Supports

m http://www.dyninst.org

Power/PowerPC (Linux) [X86 (Linux, BSD, Windows)
BlueGene/P X86_64 (Linux, BSD, Windows)

Moscow
July 2011
) JULICH
Dyn
Iinst

1-29

Comparison of Techniques (I)

m Source code instrumentation
© Portable
© Link back to source code easy
© Only way to capture “high-level” user abstractions

® Recompilation necessary for
(change in) instrumentation

® Requires source code to be available
® Hard to use for mixed-language applications

® Source-to-source translation tool hard to implement
for C++ and Fortran90

4) 0LicH

1-30

© 2011 Bernd Mohr

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

Comparison of Techniques (II)

m Binary code instrumentation

©/® The other way around compared
to source instrumentation

m Pre-instrumented library / runtime
© Easy to use: only re-linking necessary

@ can only record information about
library / runtime entities

m No single technique is sufficient!
m Typically, combinations of techniques needed!

#) 0LICH

FORSCHUNGSZENTRUM

1-31

© 2011 Bernd Mohr

CONTENT

Metrics
Instrumentation techniques
+ Source code instrumentation
- Binary instrumentation
Instrumentation of parallel programs
+ MPI

« OpenMP
Measurement techniques

- Profiling

« Tracing

#) 0LICH

FORSCHUNGSZENTRUM

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

Instrumentation of Parallel Programs J JULICH
m User-level constructs
Modules / components / ...
Program phases
Functions
Loops
m Constructs of the parallel programming models
Message passing
= MPI, PVM, ...
Threading and synchronization
m OpenMP, POSIX, Win32, or Java threads, ...
1-33
Instrumentation of User Functions 4 JULICH

m Ideally: instrumentation by compiler or tool

Hidden, unsupported compiler options
(GNU, Intel, IBM, NEC, Sun Fortran, PGI, Hitachi, ???)

TAU Source Code Instrumentor
TAU Binary Instrumentor (Dyninst)
TAU Virtual Machine Instrumentor (Java, Python)

m Always works: manually

Scalasca’s POMP Directives
More details later ...

m Main problem: selection of relevant constructs

Instrumentation APIs of tools: Scalasca, Vampirtrace, TAU, ...

1-34

© 2011 Bernd Mohr

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance Moscow
Measurementand Analysis on Parallel Systems July 2011

PMPI: The MPI Profiling Interface #) JOLICH

m Every MPI function has two names: MPI_xxX and PMPI_XXX

m This allows selective replacement of MPIroutines at link time
= no re-compilation necessary

m Also called: wrapper function library
m Used by basically every MPI performance tools
VampirTrace, MPICH MPE, Scalasca EPIK, TAU, ...

- e e —

CallMPI_Send | =I MPI_Send } | MPI_Send
:I PMPI_Send |
|CaHMM Bcast | 4 MPI_Bcast |

\ User Program \ Wrapper Library J \ MPILibrary

PMPI Example (C/C++) 4) JULICH

#include <stdio.h>
#include "mpi.h"

static int numsend = 0;

int MPI_Send(void *buf, int count, MPI_Datatype type,

int dest, int tag, MPI_Comm comm) {
numsend++;

return PMPI_Send(buf, count, type, dest, tag, comm) ;
}

int MPI_Finalize() {
int me;
PMPI_Comm_rank (MPI_COMM_WORLD, &me) ;
printf("%d sent %d messages.\n", me, numsend);

return PMPI_Finalize(Q); 7
}

1-36

© 2011 Bernd Mohr 'J !FJLICH

XSCHUNGSZENTRUM

Principles and Practice of Application Performance Moscow
Measurementand Analysis on Parallel Systems July 2011

PMPI Wrapper Development #4) JULICH

m MPIlhas many functions! [MPI-1: 130 MPI-2: 320]
= use wrapper generator (e.g., from MPICH MPE)

= needed for Fortran and C/C++

m Message analysis / recording
Location recording = use ranks in MPI_COMM_WORLD?
Datavolume = #elements * sizeof(type)
No message ID = need complete recording of traffic
Wildcard source and tag = record real values
Collective communication = communicator tracking
Non-blocking, persistent communication = track requests
Non-blocking = record recv at Wait*, Test*, Irecv ?
One-sided communication?

1-37

OpenMP Monitoring? 9 JU'—'CH

m Problem:
OpenMP does not define standard monitoring interface
OpenMP is defined mainly by directives/pragmas

m Solution:
POMP: OpenMP Monitoring Interface
Joint Development
m Forschungszentrum Jilich
= University of Oregon
Presented at EWOMP’01, LACSI'01 and SC'01

é% “The Journal of Supercomputing”, 23, Aug. 2002.

© 2011 Bernd Mohr 'J JULICH

FORSCHUNGSZENTRUM

Moscow

Principles and Practice of Application Performance
July 2011

Measurementand Analysis on Parallel Systems

Example: _ A))iLICH
! SOMP PARALLEL DO POMP Instrumentation

— context |-
call pomp_parallel_fork(dl) / descriptor
)

!$OMP PARALLEL other-clauses. ..
call pomp_parallel_begin(d
call pomp_do_enter(d2)
1$OMP DO schedule-clauses, ordered-clauses,

lastprivate-clauses
do Toop
1$OMP END DO NOWAIT
call pomp_barrier_enter(d3)
1 $OMP BARRIER
call pomp_barrier_exit(d3)
call pomp_do_exit(d2)
call pomp_parallel_end(dl)

1$OMP END PARALLEL DO
call pomp_parallel_join(dl) 7

POMP-like Hooks in Production Compilers %4 JULICH

m POMP was the base for the OpenMP instrumentation hooks provided in
production compilers
Cray Compiling Environment
PGI
IBM XL compilers

m These instrumentation hooks are used for performance analysis of
OpenMP in productiontools
CrayPat
PGProf

m Also: New OpenMP ARB sanctioned low-level tool interface
http://www.compunity.org/futures/omp-api.htmil

Proof-of-conceptimplementations by Sun and Intel compilers
1-40

#) JOLICH

YSCHUNGSZENTRUM

© 2011 Bernd Mohr

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

POMP Instrumentation Tool J JULICH
m OpenMP Pragma And Region Instrumentor
m Source-to-source translator to insert POMP calls par

around OpenMP constructs and API functions
m Implemented in C++

m Supports:
Fortran77 und Fortran90, OpenMP 2.0
Cund C++, OpenMP 1.0
Additional POMP directives for control and region definition
Used by Scalasca, VampirTrace, TAU, and ompP
Preserves source code information (#line line file)

m Does not support: Instrumentation of user functions

1-41

Current Major OPARI Limitations 4 JULICH

m Does not yet support
Varying number of threads in different parallel regions
Nested parallelism

Tratest OpenttP-3-0standard features fike tasking— Fixed in OPARI2

m Executed before compiler preprocessor
= issues with macros, conditional compilation, includes!

s special care if building ...
... more than on ication in one directory
... applications spread over multiple dir i Fixed in OPARI2

OPARI2: will be available end of 2011

1-42

© 2011 Bernd Mohr

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance Moscow
Measurementand Analysis on Parallel Systems July 2011

#) 0LICH

FORSCHUNGSZENTRUM

CONTENT

Metrics
Instrumentation techniques
- Source code instrumentation
« Binary instrumentation
Instrumentation of parallel programs
« MPI
- OpenMP
Measurement techniques

- Profiling
- Tracing

Performance Measurement A JOLICH

FORSCHUNGSZENTRUM

m Two dimensions
[1When performance measurement is triggered
m External agent (asynchronous)
o Sampling
= Timer interrupt
= Hardware counters overflow
= Can measure unmodified executables, very low overhead
m Internal agent (synchronous)
1 Code instrumentation:
= Automatic or manual instrumentation
1 How performance data is recorded
m Profile ::= Summation of events overtime
0 run time summarization (functions, call sites, loops, ...)
m Trace file ::= Sequence of events over time

© 2011 Bernd Mohr ,J JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

Measurement #) J0LICH

FORSCHUNGSZENTRUM

m Typical performance data include
1 Counts a4
[Durations

e

0 Communication c\ost
1 Synchronization cost
110 accesses
[1System calls

[Hardware events

child
duration

1-45

Critical Issues #) 0LICH

FORSCHUNGSZENTRUM

m Accuracy
[Perturbation
m Measurement alters program behavior
= E.g., memory access pattern
[1Intrusion overhead
m Measurement itself needs time and thus lowers performance
1 Accuracy of timers, counters
m Granularity
[JHow many measurements
JHow much information / work during each measurement

m Tradeoff
1 Accuracy < expressiveness of data

1-46

© 2011 Bernd Mohr

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

Measurement Methods: Profiling J JULICH

m Recording of aggregated information
Time
Counts
m Calls
m Hardware counters
m about program and system entities
Functions, call sites, loops, basic blocks, ...
Processes, threads

m Methods to create a profile

PC sampling (statistical approach)
Interval timer / direct measurement (deterministic approach)

1-47

Profiling (2)) JULICH

m Sampling

General statistical measurement technique based on the
assumption that a subset of a population being examined is
representative for the whole population

Running program is interrupted periodically
m Operating system signal or Hardware counter overflow

m Interrupt service routine examines return-address stackto find
address of instruction being executed when interrupt occurred

Using symbol-table information this address is mapped onto
specific subroutine

Requires long-running programs
m Interval timing

Time measurement at the beginning and
at the end of acode region

Requires instrumentation + high-resolution / low-overhead clock

1-48

© 2011 Bernd Mohr

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance Moscow
Measurementand Analysis on Parallel Systems July 2011

Measurement Methods: Tracing) JULICH

m Recording information about significant points (events) during
execution of the program

Enter/leave a code region (function, loop, ...)
Send/receive a message ...
m Save information in event record
Timestamp, location ID, event type
plus event specific information
m Event trace := stream of event records sorted by time

m Can be used to reconstruct the dynamic behavior
= Abstract execution model on level of defined events

1-49
Event tracing Local trace A o JUL|CH
Process A Global trace
vl se) - — |MONITOR|—> S8 FTER
trc_enter("foo"); 62l SEND | B ss| A |ENTER | 1
trc_send(B); t GajEXIT |1 60| B | ENTER | 2
send(B, tag, buf); @ 62| A|SEND | B
}trc_exit("fOO"): 1 | foo 64| A | EXIT 1
68| B | RECV A
, g 69| B|EXIT |2
instrument < Local traceB
=
Process B v 60| ENTER | 1 merge
void bar() { .
trc_enter("bar"); 68| RECV | A lumfy
69| EXIT 1 1 [+
recv(A, tag, buf); 00
trc_recv(A); ; 2 | bar
tre exit("bar"); 1| bar
= ! => | MONITOR| —»

© 2011 Bernd Mohr 'J JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance
Measurementand Analysis on Parallel Systems

Tracing: Time-line Visualization !)JUUCH
1 | master main
2 | slave M master
3| M slave
58| A|ENTER | 1
60| B | ENTER | 2
62 A|SEND | B A—
641 A | EXIT 1 -_—
68| B |RECV | A B —
69| B | EXIT 2
T T 1T
58 60 62 64 66 68 70
1-51
Tracing vs. Profiling 4))ULICH

m Tracing Advantages

Event traces preserve the temporal and spatial relationships among
individual events (= context!)

Allows reconstruction of dynamic behavior of application
on any required abstraction level

= Automatic analysis
= Visualization
Most general measurement technique
m Profile data can be constructed from event traces

m Disadvantages

Traces can become very large
Writing events to a file at runtime can cause perturbation
Writing tracing software is complicated

m Event buffering, clock synchronization, ...

© 2011 Bernd Mohr

Moscow
July 2011

#) JULICH

FORSCHUNGSZENTRUM

Principles and Practice of Application Performance Moscow
Measurementand Analysis on Parallel Systems July 2011

Trace File Formats !) JUL'CH

m Current Vampir trace formats
VTF: family of historical ASCIl and binary formats
= http:/Awww.cs.uoregon.edu/research/paracomp/tau/vtf3-1.43.tar.gz
OTF: new Open Trace Format
m http://www.tu-dresden.de/zih/otf/
m TAU performance analysis toolset
http://tau.uoregon.edu/docs.php#api
m EPILOG: Jilich open-source trace format
http://www.scalasca.org
m MPICH Multi-Processing Environment (ALOG, CLOG, SLOG, SLOG-2)
http://www-unix.mcs.anl.gov/perfvis/software/log_format/
m Paraver trace analyzer (BSC, CEPBA)
http://www.bsc.es/paraver

No Single Solution is Sufficient! 4 JULICH

p
> N
7,&

= Combination of methods, techniques and tools needed
Instrumentation
m Source code/ binary, static /dynamic, manual / automatic
Measurement
m Internal / external trigger, profiling / tracing
Analysis
m Statistics, Visualization, Automatic, Data mining, ...

© 2011 Bernd Mohr ’J JULICH

FORSCHUNGSZENTRUM

