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Performance Tuning: an Old Problem!

[Intentionally left blank]
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“The most constant difficulty in contriving the engine has 
arisen from the desire to reduce the time in which the 
calculations were executed to the shortest which is possible.”

Charles Babbage
1791 - 1871  

Performance Tuning: an Even Older Problem!!

4

Motivation

 High complexity in parallel and distributed systems

Four layers

 Application

 Algorithm, data structures

 Parallel programming interface / Middle ware

 Compiler, parallel libraries, communication, synchronization 

 Operating system

 Process and memory management, IO

 Hardware

 CPU, memory, network

 Mapping/interaction between dif ferent layers
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Performance Properties of Parallel Programs

 Factors which inf luence performance of  parallel programs

 “Sequential” factors 

 Computation

 Cache and memory

 Input / output

 “Parallel” factors

 Communication (Message passing)

 Threading

 Synchronization

 Choose right algorithm, use optimizing compiler

 Tough!  Not many tools yet, hope compiler gets it right

 Not given enough attention

 More or less understood, tool support

Performance Measurement Cycle

I-6

 Insertion of  extra code (probes, hooks)

into application 

Instrumentation

 Transformation of  the results into a

representation that can  be easily

understood by a human user

Presentation

Measurement  Collection of  data relevant to

performance analysis

Optimization  Elimination of  performance problems

Analysis  Calculation of  metrics,  identif ication of  

performance problems 
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Metrics of Performance

 What can be measured?

A count of  how many times an event occurs

 E.g., Number of  input / output requests

The duration of  some time interval

 E.g., duration of  these requests

The size of  some parameter

 Number of  bytes transmitted or stored

 Derived metrics              

E.g., rates / throughput

Needed for normalization 
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Example Metrics 

 Clock rate

 MIPS

Millions of  instructions executed per second

 FLOPS

Floating-point operations per second 

 Benchmarks

Standard test program(s)

Standardized methodology

E.g., SPEC, Linpack

 QUIPS / HINT [Gustafson and Snell, 95]

Quality improvements per second

Quality of  solution instead of  ef fort to reach it

 Execution time

“math” Operations?

HW Operations?

HW Instructions?

32-/64-bit? …

I-10

Execution Time

 Wall-clock time

 Includes waiting time: IO, memory, other system activities

 In time-sharing environments also time consumed by other 

applications

 CPU time

Time spent by the CPU to execute the program

Execution time on behalf  of  the program

Does not include time the program was context-switched out

 Problem: does not include inherent waiting time (e.g., IO) 

 Problem: portability? What is user, what is system time?

 Problem: execution time is non-deterministic

Use mean or minimum of  several runs
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Synchronization Imbalance Time

Provides an estimation to the user of  how much time in the overall 
program would be saved if  the corresponding section of  the code had 
a perfect balance

 Represents an upper bound on the “potential saving”

Load Imbalance Metrics

 Imbalance Time

Metric time to identify code regions that need optimization

Two variations: 

Computation Imbalance Time

Computation Imbalance Time = Max Time – Avg time

Synchronization Imbalance Time = Avg Time – Min time

I-11

Load Imbalance Metrics

 Imbalance %

Provide an idea of  the “badness” of  the imbalance

Corresponds to the % of  the time that the rest of  the team, excluding 
the slowest PE is not engaged in useful work on the given function

 “Percentage of  resources available for parallelism” that is wasted

Imbalance% = 
Imbalance time

Max Time
X

N - 1

N
100 X

I-12
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Speedup and Efficiency

 For a given problem A, let

SerTime(n) = Time of  the best serial algorithm to solve A

for input of  size n

ParTime(n,p) = Time of  the parallel algorithm + architecture

to solve A for input size n, using p processors

Note that SerTime(n) ≤ ParTime(n,1)

 Then

Speedup(p) =  SerTime(n) / ParTime(n,p)

Work(p) =  p • ParTime(n,p)

Eff iciency(p) =  SerTime(n) / [p • ParTime(n,p)]

I-13

Speedup and Efficiency II

 In general, expect

 0 ≤  Speedup(p)   ≤  p

 Serial work ≤  Parallel work <  ∞

 0 ≤  Ef f iciency ≤  1

 Linear speedup:  if  there is a constant c > 0 so that speedup is at least 

c • p. Many use this term to mean c = 1.

 Perfect or ideal speedup:  speedup(p) = p

 Superlinear speedup:  speedup(p) > p  (ef f iency > 1)

Typical reason: Parallel computer has p times more memory 

(cache), so higher f raction of  program data f its in memory instead of  

disk (cache instead of  memory)

Parallel version is solving slightly dif ferent, easier problem or 

provides slightly different answer

I-14
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Amdahl’s Law

 Amdahl [1967] noted:

Given a program, let f  be f raction of  time spent on operations that 

must be performed serially (unparallelizable work). Then for p 

processors:

1

Speedup(p)  ≤

f  + (1 – f )/p

Thus no matter how many processors are used

Speedup(p) ≤  1/f  

Unfortunately, typical f  is 5 – 20%

I-15

Maximal Possible Speedup / Efficiency

I-16

f=0.001
f=0.01
f=0.1
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Amdahl’s Law II

 Amdahl was an optimist

Parallelization might require extra work, typically

 Communication

 Synchronization

 Load balancing

Amdahl convinced many people that general-purpose parallel 

computing was not viable

 Amdahl was an pessimist

Fortunately, we can break the law!

Find better (parallel) algorithms with much smaller values of  f

Superlinear speedup because of  more data f its cache/memory

Scaling: time spent in serial portion is of ten a decreasing f raction of  

the total time as problem size increase

I-17

Scaling

 Sometimes the serial portion

 is a f ixed amount of  time independent of  problem size

 or grows with problem size but slower than total time

 Thus can of ten exploit large parallel machines by scaling the problem 

size with the number of  processes

 Scaling approaches used for speedup reporting/measurements:

Fixed problem size ( strong scaling)

Fixed problem size per processor ( weak scaling)

Fixed time, f ind largest problem solvable [Gustafson 1988]

Commonly used in evaluating databases (transactions/s)

Fixed ef f iciency: f ind smallest problem to achieve it

( isoef f iciency analysis)

I-18
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Performance Tools Challenge

 User’s mental model of  the program

does not match the executed version

Performance tools must be able to revert this semantic gap

C = A + B

(c1 , c2) = (a1 , a2) 6 (b1 , b2)

a1=1& a2=1e c1bb1& 

c2bb2

b1=1& b2=1e c1ba1& 

c2ba2

for i = 1 : 2 ,

a i=? e ci b b i

b i=? e ci b a i

a i= b i e ci b a i

otherwise, error

...

v09,S  [ a30,1] ,m00

a30    - 26612: abcd

v12,S  [ a31,1] ,m00

a30    a 12+a30

a31    - 26616: abcd

v10,S  [ a30,1] ,m00

a16    - 22516: abcd

a31    a 12+a31

a30    a 15+a16

v14,S  [ a31,1] ,m00

a16    - 32764: abcd

v11,S  v 10-v14 ,m00

...
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Semantic Gap

 Instrumentation levels

Source code

 Library 

Runtime system

Object code

Operating system

Runtime image

Virtual machine

 Problem

Every level provides dif ferent information

Often instrumentation on multiple levels required

 Challenge

Mapping performance data onto application-level abstraction 

I-22

Instrumentation Techniques

 Static instrumentation

Program is instrumented prior to execution

 Dynamic instrumentation

Program is instrumented at runtime

 Code is inserted 

Manually

Automatically

 By preprocessor / source-to-source translation tool

 By compiler

 By linking against pre-instrumented library or runtime system

 By binary-rewrite / dynamic instrumentation tool 

 e.g., “printf”   manual static source-code instrumentation
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Source Code Instrumentation (I)

 For large complex applications, manual instrumentation is too tedious

and error-prone  Tool support needed

 Automatic performance Instrumentation typically requires full source 

code parsers, e.g.,

Fortran, C: f ind 1st executable line and all exit points

C: executable code inside return statements

int func(...) {
double d;
return (foo()*bar());

}

int func(...) {
double d;
trace_enter();
return (foo()*bar());
trace_exit();

}

int func(...) {
double d;
trace_enter();
trace_exit();
return (foo()*bar());

}

int func(...) {
double d;
trace_enter();
{ int t1_ = (foo()*bar());

trace_exit();
return t1_; }

}

I-24

Source Code Instrumentation (II)

 Example C++ issues:

Template instrumentation?

Executing code before main

 C++ instrumentation trick

Def ine instrumentation object

Declare instrumentation object as 1st statement in every function 

and method to be instrumented 

class Tracer { public:
Tracer(…) { trace_enter(); }
~Tracer() { trace_exit(); }

};

int func(...) { Tracer trc_1;
double d;
return (foo()*bar());

}

 Function overloading

 Operator overloading
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TAU Source Code Instrumentor

 Part of  the TAU performance f ramework

 Supports

 f77, f90

C, and C++

 Inserts calls to the TAU monitoring API

 Based on the Program Database Toolkit

 http://tau.uoregon.edu/

I-26

Program Database Toolkit

 Based on commercial parsers

C, C++:  Edison Design Group (EDG)

 Full ISO 1998 C++ and ISO 1999 C Support

Fortran 77, Fortran90:  Mutek, [Cleanscape]

 Program Database Utilities and Conversion

Tools APplication Environment (DUCTAPE)

Object-oriented Access to Static Information

Classes, Modules, Routines, Types, Templates, Files, Macros, 

Namespaces, Comments/Pragmas, Statements (C/C++ only)

 http://www.cs.uoregon.edu/research/pdt/
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PDT Architecture and Tools

Application
/ Library

C / C++
parser

Fortran parser
F77/90/95

C / C++
IL analyzer

Fortran
IL analyzer

Program
Database

Files

IL IL

PDBhtml

SILOON

CHASM

TAU_instr

Program
documentation

Application
component glue

C++ / F90/95
interoperability

DUCTAPE Automatic source
instrumentation

I-28

Binary Instrumentation

 Static binary rewrite

 Instrumentation code is inserted

into the binary before it starts to execute

Creates modif ied executable

 Dynamic binary instrumentation

On-the-f ly: Insert, remove, and change instrumentation

in the application program while it is running

Most f lexible (but most complex) technique

Parallel programs

 Coordinated instrumentation of  all images needed
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Dyninst

 Dyninst is a C++ library for machine-independent

 process control and manipulation

 runtime code generation

 and binary patching

 University of  Wisconsin and University of  Maryland

 Basis for Paradyn, DPCL, and OpenSpeedShop

 Open source

 Supports

Power/PowerPC (Linux)

BlueGene/P

 http://www.dyninst.org

 X86 (Linux, BSD, Windows)

 X86_64 (Linux, BSD, Windows)

I-30

Comparison of Techniques (I)

 Source code instrumentation

 Portable

 Link back to source code easy

 Only way to capture “high-level” user abstractions

 Recompilation necessary for

(change in)  instrumentation

 Requires source code to be available

 Hard to use for mixed-language applications

 Source-to-source translation tool hard to implement

for C++ and Fortran90
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Comparison of Techniques (II)

 Binary code instrumentation

 /  The other way around compared

to source instrumentation

 Pre-instrumented library / runtime

 Easy to use: only re-linking necessary

 Can only record information about

library / runtime entities

 No single technique is suf f icient!

 Typically, combinations of  techniques needed!

CONTENT
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Instrumentation of Parallel Programs

 User-level constructs

Modules / components / …

Program phases

Functions

 Loops

…

 Constructs of  the parallel programming models

Message passing

 MPI, PVM, …

Threading and synchronization

 OpenMP, POSIX, Win32, or Java threads, …

I-34

Instrumentation of User Functions

 Ideally:  instrumentation by compiler or tool

Hidden, unsupported compiler options

(GNU, Intel, IBM, NEC, Sun Fortran, PGI, Hitachi, ???)

TAU Source Code Instrumentor

TAU Binary Instrumentor (Dyninst)

TAU Virtual Machine Instrumentor (Java, Python)

 Always works:  manually

 Instrumentation APIs of  tools: Scalasca, Vampirtrace, TAU, …

Scalasca’s POMP Directives

More details later …

 Main problem:  selection of  relevant constructs
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PMPI: The MPI Profiling Interface

 Every MPI function has two names:  MPI_xxx and PMPI_xxx

 This allows selective replacement of  MPI routines at link time

no re-compilation necessary

 Also called:  wrapper function library

 Used by basically every MPI performance tools

VampirTrace, MPICH MPE, Scalasca EPIK, TAU, …

User Program

Call MPI_Bcast

Call MPI_Send

MPI Library

MPI_Bcast

PMPI_Send

MPI_Send

MPI Library

MPI_Bcast

PMPI_Send

MPI_Send

Wrapper Library

MPI_Send
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PMPI Example (C/C++)

#include <stdio.h>

#include "mpi.h"

static int numsend = 0;

int MPI_Send(void *buf, int count, MPI_Datatype type,

int dest, int tag, MPI_Comm comm) {
numsend++;

return PMPI_Send(buf, count, type, dest, tag, comm);
}

int MPI_Finalize() {
int me;

PMPI_Comm_rank(MPI_COMM_WORLD, &me);
printf("%d sent %d messages.\n", me, numsend);
return PMPI_Finalize();

}
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PMPI Wrapper Development 

 MPI has many functions!    [MPI-1: 130   MPI-2: 320]

 use wrapper generator (e.g., f rom MPICH MPE)

 needed for Fortran and C/C++

 Message analysis / recording

 Location recording  use ranks in MPI_COMM_WORLD?

Data volume  #elements * sizeof(type)

No message ID  need complete recording of  traf f ic

Wildcard source and tag  record real values

Collective communication  communicator tracking

Non-blocking, persistent communication  track requests

Non-blocking  record recv at Wait*, Test*, Irecv ?

One-sided communication?

I-38

OpenMP Monitoring?

 Problem:

OpenMP does not def ine standard monitoring interface

OpenMP is def ined mainly by directives/pragmas

 Solution:

POMP:  OpenMP Monitoring Interface

 Joint Development

 Forschungszentrum Jülich

 University of  Oregon

Presented at EWOMP’01, LACSI’01 and SC’01

“The Journal of  Supercomputing”, 23, Aug. 2002.
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Example:
!$OMP PARALLEL DO POMP Instrumentation

!$OMP PARALLEL DO clauses...

do loop

!$OMP END PARALLEL DO

!$OMP PARALLEL other-clauses...

!$OMP DO schedule-clauses, ordered-clauses,
lastprivate-clauses

do loop
!$OMP END DO

!$OMP END PARALLEL DO

NOWAIT

!$OMP BARRIER

call pomp_parallel_fork(d1)

call pomp_parallel_begin(d1)

call pomp_parallel_end(d1)

call pomp_parallel_join(d1)

call pomp_do_enter(d2)

call pomp_do_exit(d2)

call pomp_barrier_enter(d3)

call pomp_barrier_exit(d3)

context
descriptor

POMP-like Hooks in Production Compilers

 POMP was the base for the OpenMP instrumentation hooks provided in 

production compilers

Cray Compiling Environment

PGI

 IBM XL compilers 

 These instrumentation hooks are used for performance analysis of  

OpenMP in production tools

CrayPat

PGProf

 Also: New OpenMP ARB sanctioned low-level tool interface

 http://www.compunity.org/futures/omp-api.html

Proof -of-concept implementations by Sun and Intel compilers

I-40
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POMP Instrumentation Tool

 OpenMP Pragma And Region Instrumentor

 Source-to-source translator to insert POMP calls

around OpenMP constructs and API functions

 Implemented in C++

 Supports:

Fortran77 und Fortran90, OpenMP 2.0

C und C++, OpenMP 1.0

Additional POMP directives for control and region def inition

Used by Scalasca, VampirTrace, TAU, and ompP

Preserves source code information (#line line f ile)

 Does not support:  Instrumentation of  user functions

Current Major OPARI Limitations

 Does not yet support

Varying number of  threads in dif ferent parallel regions

Nested parallelism

 Latest OpenMP 3.0 standard features like tasking

 Executed before compiler preprocessor

 issues with macros, conditional compilation, includes!

 Needs special care if  building ...

 ... more than one application in one directory

 ... applications spread over multiple directories

I-42

Fixed in OPARI2

Fixed in OPARI2

OPARI2:  will be available end of 2011
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Performance Measurement

 Two dimensions

When performance measurement is triggered

 External agent (asynchronous)

 Sampling

 Timer interrupt

 Hardware counters overf low

 Can measure unmodif ied executables, very low overhead

 Internal agent (synchronous)

 Code instrumentation: 

 Automatic or manual instrumentation

How performance data is recorded

 Prof ile ::= Summation of  events over time 

 run time summarization (functions, call sites, loops, …)

 Trace f ile ::= Sequence of  events over time
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inclusive

duration
child

duration

Measurement

 Typical performance data include

Counts

Durations

Communication cost

Synchronization cost

 IO accesses

System calls

Hardware events

exclusive

duration

int f1() 

{
int a;

a = a + 1;

f2();

a = a + 1;

return a;
}
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Critical Issues

 Accuracy

Perturbation

 Measurement alters program behavior

 E.g., memory access pattern

 Intrusion overhead

 Measurement itself  needs time and thus lowers performance

Accuracy of  timers, counters

 Granularity

How many measurements 

How much information / work during each measurement 

 Tradeof f

Accuracy expressiveness of  data
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Measurement Methods: Profiling

 Recording of  aggregated information

Time

Counts

 Calls

 Hardware counters

 about program and system entities

Functions, call sites, loops, basic blocks, …

Processes, threads

 Methods to create a prof ile

PC sampling (statistical approach)

 Interval timer / direct measurement (deterministic approach) 
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Profiling (2)

 Sampling

General statistical measurement technique based on the 
assumption that a subset of  a population being examined is 
representative for the whole population

Running program is interrupted periodically

 Operating system signal or Hardware counter overf low

 Interrupt service routine examines return-address stack to f ind 
address of  instruction being executed when interrupt occurred

 Using symbol-table information this address is mapped onto 
specif ic subroutine

Requires long-running programs

 Interval timing

Time measurement at the beginning and
at the end of  a code region

Requires instrumentation + high-resolution / low-overhead clock
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Measurement Methods: Tracing

 Recording information about signif icant points (events) during 

execution of  the program

Enter/leave a code region (function, loop, …)

Send/receive a message ...

 Save information in event record

Timestamp, location ID, event type

 plus event specif ic information

 Event trace := stream of  event records sorted by time

 Can be used to reconstruct the dynamic behavior

 Abstract execution model on level of  def ined events

Event tracing

void foo() {

...

send(B, tag, buf);
...

}

Process A

void bar()  {

...

recv(A, tag, buf);

...

}

Process B

MONITOR

MONITOR

s
y

n
c

h
ro

n
iz

e
(d

)

void bar() {

trc_enter("bar");

...

recv(A, tag, buf);

trc_recv(A);
...

trc_exit("bar");

}

void foo() {

trc_enter("foo");

...

trc_send(B);

send(B, tag, buf);
...

trc_exit("foo");

}

instrument

Global trace 

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify

1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo1

...

bar1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...
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Tracing: Time-line Visualization

1 master

2 slave

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main

master

slave

58 60 62 64 66 68 70

B

A
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Tracing vs. Profiling

 Tracing Advantages

Event traces preserve the temporal and spatial relationships among 

individual events ( context!)

Allows reconstruction of  dynamic behavior of  application

on any required abstraction level

 Automatic analysis

 Visualization

Most general measurement technique

 Prof ile data can be constructed f rom event traces

 Disadvantages

Traces can become very large

Writing events to a f ile at runtime can cause perturbation

Writing tracing sof tware is complicated

 Event buf fering, clock synchronization, …
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Trace File Formats

 Current Vampir trace formats

VTF:  family of  historical ASCII and binary formats

 http://www.cs.uoregon.edu/research/paracomp/tau/vtf3-1.43.tar.gz

OTF:  new Open Trace Format

 http://www.tu-dresden.de/zih/otf /

 TAU performance analysis toolset

 http://tau.uoregon.edu/docs.php#api

 EPILOG: Jülich open-source trace format

 http://www.scalasca.org

 MPICH Multi-Processing Environment (ALOG, CLOG, SLOG, SLOG-2)

 http://www-unix.mcs.anl.gov/perfvis/software/log_format/

 Paraver trace analyzer (BSC, CEPBA)

 http://www.bsc.es/paraver
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No Single Solution is Sufficient!

I-5454

Combination of  methods, techniques and tools needed

 Instrumentation

 Source code / binary,  static / dynamic, manual / automatic

Measurement

 Internal / external trigger, prof iling / tracing

Analysis

 Statistics, Visualization, Automatic, Data mining, …


